ÇANKAYA UNIVERSITY Faculty of Arts and Sciences

Course Definition Form

Part I. Basic Course Information

Department Name	MATHEMATICS								Dept. Numeric Code		2	7
Course Code	M A	T H	3	8	6	Number of Weekly Lecture Hours	3	Number of Weekly Lab/Tutorial Hours	0	Number of Credit Hours	3	
Course Web Site	http://math386.cankaya.edu.tr								ECTS Credit		0	5

Course Name This information will appear in the printed catalogs and on the web online catalog. English Name Introduction to Mathematical Modeling Turkish Name	Matematiksel Modellemeye Giriş

Course Description

Provide a brief overview of what is covered during the semester. This information will appear in the printed catalogs and on the web online catalog Maximum 60 words.

Discrete dynamical systems. Optimization models and Linear Programming. Correlation and regression. Discrete and continuous probabilistic models. Predator-prey models, optimal harvesting, traffic flow. Verification and validation of models.

Course Classification Give the appropriate percentage for each category. Category Mathematics \& Natural Sciences	 Architectural Sciences	Administrative \& Social Sciences			
Percentage	70	20	10		

Part II. Detailed Course Information

Course Objectives

Maximum 100 words
To teach students to make a bridge between mathematics and the applications of mathematics in various fields of science, engineering and economy.

Learning Outcomes

Explain the learning outcomes of the course. Maximum 10 items.

The students will be able to investigate meaningful and practical problems of many academic disciplines.

Textbook(s) List the textbook(s), if any, and other related main course material.				
Author(s)	Title	Publisher	Publication Year	ISBN
F. R. Giordano, M. D. Weir, W. P. Fox	Mathematical Modeling	Brooks/ Cole Thomson	2003	
			$0-534-38428-5$	

Reference Books List, if any, other reference books to be used as supplementary material.				
Author(s)	Title	Publisher	Publication Year	ISBN
D.D. Mooney, M. R. Swift	A course in Mathematical Modeling	Mathematical Association of America	1999	$0-8336-5712-\mathrm{x}$

Teaching Policy

Explain how you will organize the course (lectures, laboratories, tutorials, studio work, seminars, etc.)
3 hours of lecturing per week. Attendance is compulsory

Laboratory/Studio Work

Give the number of laboratory/studio hours required per week, if any, to do supervised laboratory/studio work and list the names of the laboratories/studios in which these sessions will be conducted.

Computer Usage

Briefly describe the computer usage and the hardware/software requirements for the course.

The students must use computers to simulate data belongs to applications.

Course Outline List the weekly topics to be covered. Week Topic(s)	
1	Preliminaries
2	Modeling change with Difference equations
3	Solutions to dynamical systems
4	The Modeling process, proportionality and Geometric Similarity
5	Modeling Fitting
6	Experimental modeling
7	Simulation modeling
8	Discrete probabilistic modeling
9	Discrete optimization modeling
10	Graphs of Functions as models
11	Modeling with differential equations
12	Modeling with systems of differential equations
13	Continuous optimization modeling
14	Review

Grading Policy List the assessment tools and their percentages that may give an idea about their relative importance to the end-of-semester grade.								
Assessment Tool	Quantity	Percentage	Assessment Tool	Quantity	Percentage	Assessment Tool	Quantity	Percentage
Homework	5	10	Case Study			Attendance		
Quiz(es)			Lab Work			Field Study		
Midterm Exam	2	50	Classroom Participation			Project		
Term Paper			Oral Presentation			Final Exam	1	40

ECTS Workload List all the activities considered under the ECTS.			
Activity	Quantity	Duration (hours)	Total Workload (hours)
Attending Lectures (weekly basis)	14	3	42
Attending Labs/Recitations (weekly basis)			
Compilation and finalization of course/lecture notes (weekly basis)	14	1	14
Collection and selection of relevant material (once)	1	5	5
Self study of relevant material (weekly basis)	14	1	14
Take-home assignments	5	2	10
Preparation for quizzes			
Preparation for mid-term exams (including the duration of the exams)	2	10	20
Preparation of term paper/case-study report (including oral presentation)			
Preparation of term project/field study report (including oral presentation)			
Preparation for final exam (including the duration of the exam)	1	20	20
TOTAL WORKLOAD / 25			125/25
		CTS Credit	5

[^0]Program Qualifications vs. Learning Outcomes Consider the program qualifications given below as determined in terms of learning outcomes and acquisition of capabilities for all the courses in the curriculum. Look at the learning outcomes of this course given above. Relate these two using the Likert Scale by marking with X in one of the five choices at the right

No	Program Qualifications	Contribution				
No		0	1	2	3	4
1	Adequate knowledge in mathematics; ability to use applied and theoretical information in these areas to solve pure and applied mathematical problems.					X
2	Ability to use modern computational tools to analyze an abstract or real life problem				X	
3	Adequate knowledge in theoretical and historical background in mathematics				X	
4	Ability to work individually and in teams efficiently, ability to collaborate effectively in teams to analyze complex systems from intra-disciplinary and multi-disciplinary areas				X	
5	Ability to communicate effectively in English about technical subjects, both orally and in writing				X	
6	Ability to use, develop and implement new experiments and algorithms to solve scientific, engineering and financial problems				X	
7	Ability to analyze a mathematical problem using both analytical and numerical methods; use and compare theoretical and simulational methods to gain deeper insight				X	
8	Ability to report the findings, conclusions and interpretations related to a project in the area of pure and applied mathematics, ability to write technical reports, to prepare and conduct effective presentations				X	
9	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to keep continuous self improvement				X	
10	Awareness of professional and ethical responsibility issues and their legal consequences					X

[^0]: Total Workloads are calculated automatically by formulas. To update all the formulas in the document first press CTRL+A and then press F9.

