The Department of Mathematics and Computer Scienceoffers two programs that grant graduate degrees. One of these programs is the Master of Science degrees in Mathematics without Thesis Program. This program was designed for students who want to perform advanced work to specialize in areas needed by various industries in today’s information age.



The following prerequisites apply for the practice and completion of the Master of Science Degrees in Mathematics without ThesisProgram:


  • The time to complete the program is six semesters maximum.Candidates who cannot finish on time can still register in case they pay tuition fee. In such a case, their studentship is limited to participation to the classes and exams, and all other rights cease.
  • Course Requirements:
    • A student must take minimumthirty credits in total with ten courses in addition to MCS 592 Project course. Three of these courses must be chosen from the Compulsory Course Set and the rest from the Elective Course Set provided in the table below and/or from other departments with the approval of their advisor. Upon completing these courses, students who wish may also take additional courses.For students who take courses in addition to their minimum course load with the recommendation of the Department of Mathematics and Computer Science and the approval of the Institute Administrative Board, their grades in these courses will not be factored into their grade point average but will be included in their transcript.
    • Project course: Students must prepare their project and present it at the end of the semester. Students should register this course at the semester that the Department of Mathematics and Computer Science determines and they should submit their report at the end of the semester.
    • Additionally,as stated in the Çankaya University Graduate Education Regulationsin the Graduate Program without Thesis,
      • A student may takeundergraduate courses with the recommendation of the Department of Mathematics and Computer Science and the approval of the Institute Administrative Board. However, only three of these courses at the most will be factored in when calculating the course load and graduate degree credits.
      • The student may take graduate courses at universities other than ÇankayaUniversity to be factored into the course load with the recommendation of the Academic Committee of the Department of Mathematics and Computer Science and the approval of the Institute Administrative Board. The number of these courses cannot exceed three.
    • The Department of Mathematics and Computer Science appoints an advisor to each student to select courses at the latest from the first semester. The determination and registration of/to the courses are conducted by the


Compulsory Courses
Course Code Title Credit Course Content
MCS 501   Analysis 3 0 3 Elementary topology of Rn, continuous functions in Rn, uniform continuity, uniform convergence, differentiability and implicit function theorem, differentiation under an integral sign, Stone-Weierstrass theorem on the real line, measure spaces, Lebesgue measure and integral, convergence theorems for the Lebesgue integral, types of convergence for sequences of functions, product measures and Fubini’s theorem, Lp spaces and the Riesz representation theorem, Radon-Nikodym theorem.
MCS 502   Ordinary Differential Equations 3 0 3 Basic theory: initial value problems. Linear systems: linear homogeneous and non homogeneous systems. Linear systems with constant and periodic coefficients. Oscillation theory. Stability: definitions of stability and its boundedness. Lyapunov functions. Lyapunov stability and instability. Domain of attraction. Perturbation of linear systems. Stability of an equilibrium point. The stable manifold. Stability of periodic solutions. Asymptotic equivalence.
MCS 506   Algebra 3 0 3 Groups: generalities, groups acting on a set, Sylow theorems, free group, direct product and sums. Rings: generalities, commutative rings, principle ideal domains, unique factorization domains, Euclidean domains. Noetherian rings. Hilbert’s theorem. Field of fractions. Localization.


Elective Courses (Seven of the Following Courses)
Course Code Title Credit Course Content
MCS 503    Scientific Computation I 3 0 3 Gaussian elimination and its variants. Sensitivity of linear systems. Orthogonal matrices and the least squares problem. Eigenvalues and eigenvectors. The singular value decomposition. Solutions of Partial differential equations, solution of system of equations, Examples of time dependent events, and their solutions. Applications with MATLAB / Java.
MCS 507   Partial Differential Equations 3 0 3 Cauchy-Kowalevski theorem. Linear and quasilinear first order equations. Existence and uniqueness theorems for second order elliptic, parabolic and hyperbolic equations. Correctly posed problems. Green’s function.
MCS 510   Applied Functional Analysis 3 0 3 Distribution theory and Green’s functions, the Delta function, basic distribution theory, convergence of distributions, The integral of a distribution, Applications of Green’s functions, The classical Fourier transform, Distributions of slow growth, generalized Fourier transforms, Banach spaces and fixed point theorems, the contraction mapping theorem, Application to differential and integral equations, Hilbert spaces, orthogonal expansions, bounded operators on normed spaces, eigenvalue problems for self-adjoint operators, variational methods, positive operators, the Rayleigh- Ritz method for eigenvalues, applications.
MCS 512   Scientific Computation II 3 0 3 Interpolation: Polynomial interpolation, Divided differences, Hermite interpolation, Spline interpolation. Approximation of functions. Numerical differentiation: Richardson extrapolation. Numerical integrations: Guassian Quadrature, Romberg integration. Root finding methods:Bisection, Newton, Secant methods, Fixed point iteration. Applications with MATLAB.
MCS 513   Nonlinear Dynamical Systems 3 0 3 Equilibrium solutions, Lyapunov Functions, Periodic Solutions, Poincare maps, center manifolds, normal forms, bifurcation.
MCS 514   Special Topics in Fractional Differential Equations 3 0 3 Fractional integrals and derivatives, Cauchy type problem for ordinary fractional linear equations, Fractional existence and uniqueness theorems, Fractional method of reduction to fractional Volterra integral equations, Fractional compositional method. Applications with MATLAB.
MCS 515   Special Topics in Applied Convex Functions 3 0 3 Convex functions on Intervals, the integral form of Jensen’s inequality, the Hermite-Hadamard Inequality, convexity and majorization, Comparative Convexity on Intervals, the Gamma and Beta functions, Multiplicative convexity of special functions, Convex functions on Banach spaces, Continuity, Differentiability of convex functions, the variational approach of Partial Differential Equations, the minimum of convex functionals.
MCS 516   Spectral Theory of Linear Operators 3 0 3 Compact operators, compact operators in Hilbert spaces, Banach Algebras, The spectral theorem of normal operators, unbounded operators between Hilbert spaces, The spectral theorem for unbounded adjoint operators, self-adjoint operators, self adjoint extentions.
MCS 517   Advanced Dynamic Equations On Time Scales 3 0 3 Linear Systems, Initial Value Problems, Existence and Uniqueness of Solutions, Self-Adjoin Matrix Equatios, Asymptotic Bahavior of Solutions, Oscillation Theory, Higher Order Linear Dynamic Equations, Dynamic Inequalities, Upper and Lower Solitions, Linear Symplectic Dinamic Systems, Nonlinear Theory
MCS 519 Difference Equations 3 0 3 The difference calculus, first order equations, linear equations, equations with constant coefficients, equations with variable coefficients, undetermined coefficients method, variation of parameters method, the Z-transform, linear systems, stability theory


At the latest from Third Semester
MCS 592   Project


For more information,Çankaya University Graduate Education Regulations.

Please click here to see Sample Scenario.


Sample Scenario
1st Semester 2nd Semester 3rd Semester 4th Semester
Compulsory Course I Compulsory Course III Elective Course VI
Compulsory Course II Elective Course III Elective Course VII
Elective Course I Elective Course IV Project
Elective Course II Elective Course V